

Ultra High Brightness Laser Diode Arrays for Pumping of Solid State Lasers

A. Kohl, F. Liffran, O. Rabot Quantel Laser Diodes

Scientific & industrial products

Semi-conductor products

Medical products

The Quantel Group

Medical Lasers Business Unit

Scientific and Industrial Lasers B.U.

- Industrial Lasers
- Pump Lasers (Ti:Sa Oscillators, Amplifier)
- Space Born & Defense Lasers
- Mega Joule Laser (Pre-Amplifier)
- Fiber Lasers
- High Power Laser Diodes

Ti:Sa pumping: a product range from Ti:Sa oscillator to power amplifier

Fluorescence Image South Amplifier, Crystal Pumped From Both Sides 600 0 200 400 600 Sig. [arb. u.] 20 25 30 35 40 Horizontal Position [mm]

Courtesy of Rutherford Appleton Laboratory (UK)

June 2012: Installation of the Pre-Amplifier in Bordaux

1J class Laser Amp. including homogenizer, numerical spatial & temporal beam profilers

The Other Extreme of the Size Scale....Diodes

The Other Extreme of the Size Scale....Diodes

Pumping of...

- ...Industrial Lasers (e.g. Quantel's "Centurion")
 - Flat Panel Repair
 - Solar Cell Manufacturing

...Defense Lasers

- Targeting Pods
- Telemeters

...Space Born Lasers

- Lidar
- LIBS

Standard Packaging

- « Stack » = assembly of several High Power Diode Bars
- → Pumping of Solid State lasers: Typ. 808 nm, 880 nm, 940 nm, 980 nm

- Operating conditions = Pulsed Mode: Typically 2% Duty Cycle
- Output Power: Up to 500 W per bar (1kW for short pulse)

Qualified for....

Defence Applications (USA/Europe/Asia)

- NASA Space Programmes
 - LOLA (Moon Altimeter)
 - QLD Diodes flying around the moon
 - MSL 09 ("Chemcam"):
 - Curiosity operating on Mars
 - → LIBS Laser pumped by QLD Diodes
- **ESA Space Programmes**
 - ADM/AEOLUS
 - ATLID/Earth Care
- JAPAN Space:
 - Jaxa, NEC..

HECDPSSL: Requirements for Diode Pump Sources

Diode Stack Performance:

- High Brightness and Compactness
- Low spectral width
- High Efficiency
- Lifetime
- Price: \$/Watt

Assembling of stacks into 1 and 2 dimensional arrays

- Densely packed (compact assembly)
- Small gaps between stack to avoid "optically dead zones"
- Cold plates capable to extract waste heat

Diode-Driver

- Compliant with diode performances (e.g. increasingly high drive currents)
- Diode Protections
- Efficient

High Brightness: FA Collimation

Collimation by micro lenses

- Smaller Bar to Bar Pitch
- → Shorter Focal Length
- → More Sensitive on Bar Smile

High Brightness: FA Collimation

- Improvements in packaging (mechanical tolerances):
- → Smaller Pitch → Higher Brightness/ More Compact Stack

Further Reducing Bar Pitch: "Auto-Stack"

No CuW Heat Spreaders between Bars

- QLD Patent Pending (2000)
- Year 2000: "Low Efficiency" Bars/ Short Cavity
- → Limited to low DC (0,3%)
- → Low Power per Bar (100W)

- Year 2012: Much Higher Efficiencies/ Longer Cavities
- → Up to 2 % DC
- \rightarrow Up to 200W / Bar

→ Main Issue: Homogeneous Heat Extraction- Spectral Width

High Brightness: Power per Bar

- Fast progress < 2010
- Slowed down > 2010
 - High Power could not be used, requires high current diode drivers
 - Requires improvements on the semiconductor (facet coating, passivation)

High Brightness: Drive Current increases SA Divergence

- Drive current increases SA divergence
- Longer cavities can reduce the effect

e/o Efficiencies

Low Spectral width, high power, small pitch....

High e/o efficiencies are crucial

- Very good progress but increasingly difficult to go further
 - Complex optimization (high power, low divergence, high efficiency)

Stacks @ 940 nm

- 3 Bars Stack
- 1.2mm Pitch
- **25°C**
- Pulse: 1ms
- 10Hz

- Maximum Efficiency ~70% @ 270W/Bar
- High Efficiency → Reduced « Waste Heat » → Increasing Packaging Density (smaler pitch) → higher brightness

Aging at 400W/Bar 940 nm

Aging 370A-400W/Bar, 1 ms/ 10Hz, 35°C, 3 bars stack

→ Stable operation at 400W/Bar

Stacks @ 940 nm/ 980 nm

- 14 Bar stacks, QCW: up to 2ms
- 940 nm or 980 nm
- Up to 500W/bar (7 kW)
- > 65 % e/o efficience
- 800 µm bar to bar pitch
- FA divergence: < 0,5° @ 1/e²
- 1 cm² emitting surface

Aging 980 nm

- Stack 14 bars
- ■800µm pitch
- **400W/bar**
- **25°C**

Stacks operating at 880nm

- 3 Bars Stack
- 400 µm pitch
- **25°C**
- Pulse: 300µs
- **20Hz**

- Up to 500W per Bar
- > 60% efficiency @ 500W

Aging: 880 nm

- 3 Bars Stack
- 400 µm pitch
- **25°C**
- Pulse: 300µs
- **20Hz**

Price of Diodes

Further Reduction Expected from:

- Increasing volumes (Semiconductor and Packaging)
- Higher Power per Bar

Cold Plate for 1D Arrays

Dealing with High Drive Currents > 500 A

■ High Power Bars → Switching High Drive Currents → Cabling?

■ Integration of High Power Driver PCB on stack → Short connections for higher peak Currents. Electromagnetic field reduced.

Cold Plate for 2 D Arrays

- Cold Plate for 8 x 5 Diode Stacks 25 kW each @ 880nm or 12kW @ 940nm/980nm-1ms pulse
- Up to 1MW Total Peak Power

Designed for

- Emitting surface 167x56 mm²
- Optical Gap

FA: 1mm

SA: 1,5 mm

> 75% Optical Filling Factor

Cold Plate for 2 D Arrays

- Test with Electrical Resistances
- Rth @120 l/min: 0,25 Kcm²/W
- ∆T (ptv) @120 I/min, 30 W/cm²: 1,1°C

Conclusions

- Progress in Bar and Packaging Technology!
 - → Efficiencies of 70% max at 9xx nm
 - → Peak Power 500W per bar (@ 9xx nm & 880 nm)
- Collimation at small bar to bar pitch down to 400µm (880nm)

Extremely High Brightness stacks

Highly Compact Design

simplifies optical system

- Stack Assembly: Minimized "Dead Zones"→ 90% Optical Filling Factor in 1D and 75% in 2D
- Outlook: Increasing peak power per bar (costs, brightness)
- BUT:→ requires higher efficiencies and at max power
 - rethink packaging (Rth, costs)

1. Laser Diode Driver Specifications

Versatile capabilities

- Floating outputs
- User programmable overvoltage protection
- Internal or external trigger

№ High Efficiency

W User friendly interface

- Front panel touch screen
- **#** Ethernet remote

Fully protection of laser diodes:

- Over load protection, permanent short circuit
- reverse polarity
- Open circuit
- Safety interlock

Specifications	
Diode pulsed current	1000A (2 x 500A)
Diode voltage	0 to 100V
Peak power	50kW
Pulse energy	150J max
Pulse duration	20μs to 3ms
Pulse repetition frequency	0 to 500Hz
Average power	1000W
Universal AC input	85-265V _{AC} / 50- 60Hz

2. Features

Pulse shaping with multiphase buck converter

- Digital-only regulation with DSP
- 12 interleaved channels of 46A each
- Real time Active current balancing between channels
- Ultra low output capacitance
- **№ High efficiency >90%**

Error log / events log

- Pulses parameters
- Measured pulses characteristics
- Pulses counter

3. Other references

Diode Driver 400A / 10W

- Output: 400A during 100ns
- Frequency repetition: 10kHz
- Compact design, high efficiency

High Voltage Capacitor Charger 3kW

- ★ Three-phase AC input 115 480V, PFC
- ✓ Output 3 000 J/s, 0 3000V
- ✓ Serial trigger (25 kV)

Backup Power Supply with Ultracapacitors 8kW

- Power: 8kW during 0,5s
- Charge and discharge management
- Digital regulation and command
- Discharge current: 320Amax

Custom designs are welcome!